Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Liang-Zhong Xu,* Yong-Qi Qin, Chong-Yi Zhu, Shuang-Hua Yang and Kai Li

Institute of Agriculture Chemicals, Qingdao University of Science and Technology, 266042 Qingdao, People's Republic of China

Correspondence e-mail: qknhs@163169.net

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.064$
$w R$ factor $=0.110$
Data-to-parameter ratio $=15.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

2-(2-Fluoro-5-methylbenzoyl)-N-phenyl-2-(1H-1,2,4-triazol-1-yl)ethanethioamide

The structure of the title compound, $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{FN}_{4} \mathrm{OS}$, is stabilized by hydrogen-bonding interactions between the NH group and one of the triazole N atoms of a symmetryrelated molecule, resulting in chains parallel to the b axis.

Comment

Recently, compounds containing the $1 H-1,2,4$-triazole group have attracted much interest owing to their fungicidal and plant-growth-regulating activities (Xu et al., 2002), as well as their antibacterial activity against Puccinia recondite and rootgrowth regulation for cucumber (Zhao et al., 1998). In order to search for new triazole compounds with higher bioactivity, we synthesized and characterized the title compound, (I) (Fig. 1).

(I)

The bond lengths and angles in (I) agree with those reported in other phenyl and triazole rings (Ji et al., 2002). The $\mathrm{C}-\mathrm{S}$ bond length is close to the typical $\mathrm{C}=\mathrm{S}$ bond length. The C-F bond length $[1.361(4) \AA$] is typical of values found in a related compound with fluorine attached to a benzene ring

A molecular view (ORTEP-3; Farrugia, 1997) of the title compound, showing 30% probability displacement ellipsoids and the atomnumbering scheme.

Received 11 October 2004 Accepted 27 October 2004 Online 6 November 2004

Figure 2
Part of the packing in (I) (CAMERON; Watkin et al., 1993), showing the $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen-bonding interactions as dashed lines.
[1.363 (7) \AA and 1.355 (6) \AA in $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~F}_{2} \mathrm{IO}_{3}$ (Mark et al., 2001)]. The carbonyl group is coplanar with the $\mathrm{C} 2-\mathrm{C} 7$ benzene ring ($p 1$). The five atoms $\mathrm{S} 1 / \mathrm{C} 9 / \mathrm{C} 12 / \mathrm{C} 13 / \mathrm{N} 4$ lie in a plane ($p 2$). The dihedral angles formed by the $\mathrm{C} 13-\mathrm{C} 18$ benzene ring and triazole ring with $p 1$ and $p 2$ are 57.4 (3)/ 89.8 (6) and 42.1 (3)/83.9 (0) ${ }^{\circ}$, respectively.

The most interesting structural feature of (I) is the occurrence of an $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ interaction between the NH group and one of the triazole N atoms of a symmetry-related molecule, resulting in the formation of chains parallel to the b axis (Table 2 and Fig. 2).

Experimental

The title compound was prepared by reaction of 1-(2-fluoro-5-methylphenyl)-2-($1 \mathrm{H}-1,2,4$-triazol-1-yl)ethanone $(4.14 \mathrm{~g}, 0.02 \mathrm{~mol})$, phenyl isothiocyanate ($2.24 \mathrm{~g}, 0.02 \mathrm{~mol}$) and potassium hydroxide $(2.24 \mathrm{~g}, 0.04 \mathrm{~mol})$ in dimethyl sulfoxide solution $(30 \mathrm{ml})$ at room temperature. Single crystals of the title compound suitable for X-ray measurements were obtained by recrystallization from chloroform/ ethyl acetate $(1: 3 v / v)$ at room temperature.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{18} \mathrm{H}_{15} \mathrm{FN}_{4} \mathrm{OS} \\
& M_{r}=354.40 \\
& \text { Monoclinic, } C 2 / c \\
& a=23.939(5) \AA \\
& b=7.1430(14) \AA \AA \\
& c=22.029(4) \AA \\
& \beta=113.73(3) \\
& V=3448.4(14) \AA^{3} \\
& Z=8
\end{aligned}
$$

$$
\begin{aligned}
& D_{x}=1.365 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 20 \\
& \quad \text { reflections } \\
& \theta=2-11^{\circ} \\
& \mu=0.21 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Block, yellow } \\
& 0.25 \times 0.20 \times 0.18 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART CCD area detector diffractometer

ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.951, T_{\text {max }}=0.963$
9580 measured reflections

Refinement

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right.$).

S1-C12	$1.650(3)$	$\mathrm{N} 2-\mathrm{N} 3$	$1.362(3)$
F1-C5	$1.361(4)$	$\mathrm{N} 3-\mathrm{C} 10$	$1.316(3)$
O1-C8	$1.203(3)$	$\mathrm{N} 3-\mathrm{C} 9$	$1.456(3)$
N1-C10	$1.323(3)$	$\mathrm{N} 4-\mathrm{C} 12$	$1.325(3)$
N1-C11	$1.341(3)$	$\mathrm{N} 4-\mathrm{C} 13$	$1.427(3)$
N2-C11	$1.311(3)$		
			$119.7(2)$
C10-N1-C11	$101.8(3)$	$\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 9$	$128.7(2)$
C11-N2-N3	$101.7(2)$	$\mathrm{C} 12-\mathrm{N} 4-\mathrm{C} 13$	115.7
C10-N3-N2	$109.5(2)$	$\mathrm{C} 12-\mathrm{N} 4-\mathrm{H} 4$	115.7
C10-N3-C9	$130.6(3)$	$\mathrm{C} 13-\mathrm{N} 4-\mathrm{H} 4$	
			$-87.1(3)$
C14-C13-N4-C12	$44.3(4)$	$\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 9-\mathrm{C} 8$	$163.4(2)$
N2-N3-C9-C12	$149.4(2)$	$\mathrm{N} 3-\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 6$	

Table 2
Hydrogen-bonding geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 4-\mathrm{H} 4 \cdots \mathrm{~N} 1^{\mathrm{i}}$	0.86	2.07	$2.922(3)$	172
Symm				

Symmetry code: (i) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$.

The H atoms were positioned geometrically and were treated as riding on their parent C atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-$ $0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2$ and 1.5 times $U_{\text {eq }}$ of the parent atoms.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst 32, 837-838.
Ji, B. M., Du, C. X., Zhu, Y. \& Wang, Y. (2002). Chin. J. Struct. Chem. 21, 252255.

Mark, B. L., Parrish, J. C., Wang, Z.-X., Wiebe, L. I., Knaus, E. E. \& James, M. N. G. (2001). Acta Cryst. C57, 758-760.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. Release 97-2. University of Göttingen, Germany.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Watkin, D. M., Pearce, L. \& Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.
Xu, L. Z., Zhang, S. S., Li, H. J. \& Jiao, K. (2002). Chem. Res. Chin. Univ. 18, 284-286.
Zhao, G. F., Jin, G. Y., Liu, Z. F., Ren, J. \& Li, Y. C. (1998). Chin. J. Chem. 16, 363-366.

